
We note in conclusion that Gorodtsov and Leonov [3] have used an alternative semiempiri- 
cal theory of turbulent wall flow based on the model of a periodic viscous substrate to de- 
scribe the motion of a viscoelastic fluid; their results are qualitatively consistent with 
those obtained in the present study. 

NOTATION 

u,v, longitudinal and transverse velocity components; u',v', fluctuation velocity com- 
ponents; Z, mixing length; d, tube diameter; V, average (discharge) velocity in the tube; 
u z = ~To/p, dynamic velocity; ~, dynamic viscosity coefficient; v, kinematic viscosity coef- 
ficient; e:, relaxation time; ~2, retardation time; p, density; X, coefficient of viscous 
friction; ~, cyclic frequency; W = 0V/d, Weissenberg number; E = 0v/d 2, elastic constant; 
Re = Vd/v, Reynolds number; ppm, weight concentration of the solution in polymer parts per 
million parts water. 
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VISCOSITY OF BINARY LIQUID SYSTEMS 

G. N. Dul'nev, Yu. P. Zarichnyak, 
and B. G. Kapanadze 

UDC 532.13 

A method is proposed for calculating the viscosity of binary liquid systems 
(solutions, mixtures) involving the concentrations and properties of initial 
components on the basis of the theory of generalized conductivity. 

Formulation of the Problem 

A significant number of formulas for calculating the viscosity of binary liquid systems 
are known at present. These systems are obtained either by generalizing the experimental 
data (empirical formulas) or on the basis of the molecular theory of the liquid state. 

We note that empirical formulas that describe the isotherms of viscosity of some single 
systems do not completely satisfy the experimental data for other systems. At times, empiri- 
cal formulas satisfactorily describe only a part of the isotherm of a significant number of 
systems (in most cases, the area with the less viscous component), but these formulas do not 
agree with the experimental isotherm throughout its whole range [i]. Despite the inadequa- 
cies of empirical formulas, they do have a definite advantage because of their simplicity and 
reliability. To use formulas of the second group we must know the experimental values of the 
viscosity of a single mixture and, even better, of some of its compounds. In the latter case 
the accuracy of determining the viscosity according to these formulas significantly increases 

[2]. 

In calculating the coefficients of thermal conductivity and electric conductivity of bi- 
nary systems, we can successfully use methods of the theory of generalized conductivity that 
are applied to thestructure of a mixture with interpenetrating components. Below we show 
the possibility of extending this method to the calculation of the viscosity of binary liquid 

systems. 
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Fig. i. Calculation of the viscosity of elementary liquid 
systems. 

Viscosity of Elementary Binary Systems 

We study a homogeneous liquid between two parallel planes (Fig. la), one of which (xy) 
is immoveable, and the other B'--B' moves under the action of the constant force F along the 
y axis with the constant velocity uo. We assume that the frictional force between the plane 
and the liquid is the same as that between the moving layers in the liquid itself. A linear 
one-dimensional velocity field is established in the liquid, i.e., 

We write Newton's law of friction as 

du  
const.  (1)  

dz  h 

Fz s i du  
= , •  s i = L i A  i. (2 )  

z i d z  

After substituting (I) into (2), we obtain the equation for the force fi per unit width Ai 
of a layer of the liquid: 

Fi _ Li  uo" 
fi- Ai hizi  (3)  

We study the motion of the binary liquid, the components of which are located as shown 
in Fig. lb. We draw a conditional infinitely thin vertical plane A'--A' that separates the 
first component from the second. As above, we assume that the motion is one-dimensional. 

Equation (3) for segments 1 and 2 takes the form 

[i LI L,, 
- -  H O, ~ = ~ UO" 

h• h• 2 

T h e  t o t a l  f o r c e  F t h a t  a c t s  on  t h e  s u r f a c e  s = A(L1 + G2) = AL i s  e q u a l  t o  

r = a/: = a (h  + f~). 

After substituting fl and fa from (4) into (5), we find 

(4) 

(5 )  

• z , h 

On the other side, f can be represented as 

(6)  

L 12 o f -  
• h 

(7)  

where < is the fluidity of the binary liquid system. Equations (6) and (7) yield 
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L L 1 L~ 
-- = 4 (8) hx h• h• 

We now study a binary system whose components are located as shown in Fig. ic. We as- 
sume that the components are divided by an infinitely thin plane B'--B' that separates one 
component from the other. The character of the motion is as above. If the plane C'--C' moves 
with the velocity uo, then in the plane B'--B' the motion of the layers of the liquid will 
originate with the velocity ux. The velocity profile is shown in Fig. ic (for the case <i > 
~2). On segments 1 and 2, Eq. (3) takes the form 

~1--  L ul , f ~ =  L U o - - U  x (9) 
• h~ ~z h 2 

We transform the equations obtained: 

fl~lhl [,• 
- - = u l ,  - -  = U o - - : u  ~. ( 1 0 )  

L L 

The force f2 acts on the upper boundary and in the liquid itself on segment 2, and it equals 
the force fl on the lower boundary, i.e., fx = ft. The velocity of the liquid of each of 
the segments on the boundary is identical in magnitude (since the layers move without slip- 
page), and the gradient undergoes a stepwise variation. Thus, by combining both equations 
of (i0) and considering that f~ = f2 = f, we find 

f = Lu~ �9 (ii) 
h1• + h~• 

After using (7), we obtain 

from which 

LU o Lu o (12) 

Xh ~1hl q-• 2 ; 

h• ---- h~• + h~• 

We study the system of two components in Fig. ld. We draw a vertical infinitely thin 
plane D'--D' that separates the components so that their motion occurs independently (the 
plane of zero friction), i.e., the boundary of the first segment moves with the velocity uol 
and the boundary of the second segment moves with the velocity uo2. The motion remains one- 
dimensional as in the previous cases. We apply the force FI to the first segment and the 
force F2 to the second segment. The total force F that acts on the entire system is F = FI + 
F2. The forces per unit width on the separate segments are equal to each other and are equal 
to the total force referred to the width of the entire system: 

F 
:I = f~ : : - (13) 

A 

Equation (13) denotes that the external action on the separate components of the system is 
identical, and the difference in the properties of the components is shown by the different 
reaction of the various segments to the external action. In the present case the liquid 
layers in segments 1 and 2 will move with different velocities because of the different vis- 
cosities in them. On segments 1 and 2 we have the following from Eq. (3): 

h• h• - (14) 

Expressions ~Uo~ and A2Uo= (m2/sec) can be interpreted as the surface flow in segments i 
and 2. Thus, the total flow in the entire system is equal to 
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h 

The latter equation can be rewritten as 

h 
Aluol ~i- A2Uo~ ~- T fax. 

(15) 

(16) 

By equating the last two expressions, we obtain 

hA~ = h A:~ i.-hA_:,:• 
L L L 

We determine the thermal and electric resistances Rt and Re: 

L L 
Rt  = hA-~- ' Re - hAo 

(17) 

(18) 

and use a similar concept for the viscous resistance R~: 

L 

R~ == hA• 
(19) 

Here Eq. (8) is an example of series-connected viscous resistances R~ = R~I + R~2, and Eqs, 
<12) and (17) are an example of parallel-connected viscous resistances i.e. R -~ = R~ + R~ 

Thus, as follows from the above examples, the Kirchhoff laws are valid in calculating 
the viscous resistance of a heterogeneous liquid system. 

Viscosity of a System with Interpenetrating Components 

In [3, 4] a model of a structure in the form of a set of two space lattices with inter- 
penetrating components is used to study a binary system consisting of normal liquids. It is 
assumed that the initial thermal conductivity of the components does not vary with the con- 
centration (noninteracting components). Thermal resistances in the form of (18) are used to 
obtain equations for the effective thermal conductivity of the binary liquid system. Thus, 
we can directly use the results obtained in [3, 4] and for the effective fluidity K of the 
binary liquid system we can write an equation similar to the Dul'nev formula for the effective 
thermal conductivity of binary liquid systems: 

•215 c~ !v(1-c)~4'- 2vc(l-c)x,c-j- (1 - - c )  ] '  v - -  • ' •  ( 2 0 )  

in which the parameter c is related to the bulk concentration of the second component me by 
the equation 

2C a - -  3c ~" @ 1 == m,,, ( 2 1 )  

the solution of which is presented in [3]. 

After replacing the fluidity with the viscosity in (20), we obtain the following equa- 
tion for the effective viscosity of the binary liquid system: 

- ] -I = Pt [ c  2_~. (1 - - c )  ~ d- 2c(1 - - c )  v '  :~ Y---" . ( 2 2 )  # 
L ' ~ '  ' ( 1 - -  c) ~ '  -+- c ~tt 

To v e r i f y  Eq. (22) q u a n t i t a t i v e l y ,  the c a l c u l a t e d  va lues  of  the  e f f e c t i v e  v i s c o s i t y  are 
compared w i t h  the e x p e r i m e n t a l  data in  [5,  6] f o r  33 b i n a r y  systems w i t h  normal components 
(110 p o i n t s  i n  a l l ) ,  and a composi te  bar  graph f o r  the  d i s c r e p a n c i e s  between the  c a l c u l a t i o n  
and the  exper imen t  i s  c o n s t r u c t e d .  The form of  the graph i s  c lose  to the  curve of  the normal 
distribution with dispersion a = 3.8% and with mean arithmetic deviation b = -~0.74%. 

The obtained equation (22) describes the concentrated behavior of the isotherms of the 
viscosity of binary liquid systems consisting of normal fluids, when it is possible to neglect 
the effect of the component interaction on the effective viscosity of the system. 

8? 



p .~ u 

.~00 

~00 

..'0OO 

gO# 
0 

Fig. 2. Effective viscosity of binary 
systems: solid line corresponds to 
calculation with interaction disregard- 

ed;broken line, with interaction taken 
into account; i) amyl alcohol-benzene; 
2) bromofornt-acetone; 3) chloroform-- 
ethyl alcohol; 4) cyclohexanetoluene; 
~, Nosec/m 2. 

Viscosity of Systems with Interacting Components 

We can characterize the interaction of the components in a liquid system by the quantity 
of heat in the liquid solution. The heat of themixture is the basic energy characteristic 
of the solution; its quantity is directly related to the energy of the intermolecular inter- 
action in the liquid phase. Actually, the specific heat of the mixture of liquid systems 
with normal components of an equimolal concentration varies in order of magnitude from unity 
to tenths of cal/mole, and in systems with associated components it varies from tenths to 
hundredths of cal/mole. The heat escapes or is absorbed during the formation of the solution, 
and we can qualitatively estimate the character of the interaction between theheterogeneous 
molecules and relate this to the viscosity of the system. The heat escape testifiesto the 
fact that the proximity between the heterogeneous molecules is energetically more suitable. 
The viscosity of the binary system increases in comparison to the viscosity of the solution 
with the noninteracting components. If heat must be supplied to form the solution, then its 
components become isolated ~nd its viscosity decreases in comparison to the viscosity of the 
solution with the noninteracting components. 

We denote the integral heat of the mixture in terms of ~H and use the system of signs 
commonly used in the literature: if ~H > 0, then absorption occurs, and if ~H < 0, then the 
heat escapes. An analysis of the experimental data for the viscosity of binary liquid sys- 
tems shows that both positive ~exp -- ~ > 0 and negative ~exp -- ~ < 0 deviations (Fig. 2) are 
observed on the curve ~ = f(m2). In this connection, if ~H > 0, the heterogeneous molecules 
become isolated and 6~ < 0, and if ~H < 0, then the affinity between the heterogeneous mole- 
cules is stronger than between the homogeneous molecules, and 6~ > 0 [7]. 

We then determine the quantitative effect of the heat of the solution ~H on the quantity 
~. For this we use the da Andrade formula [8, 9] that determines the temperature function 

of the viscosity of a pure liquid: 

~ t i = A i e x p {  B~ '] 
\ RT / '  (23) 

where A i = cons t, and B i is the energy of activation (cal/mole) [i0]. In the solution the 

individual energy of activation B i' is equal to 

B~= NiBi @ NjBu, i=/=], (24) 

where  N i and Nj a r e  t he  m o l a l  c o n c e n t r a t i o n s  of  t h e  $ - t h  and j - t h  componen t s ;  Bi j  i s  t he  
mu tua l  e n e r g y  o f  a c t i v a t i o n .  I f  we assume t h a t  t h e  h e a t  o f  t h e  m i x t u r e  ~H i s  u n i f o r m l y  d i s -  
t r i b u t e d  among t he  m o l e c u l e s ,  t h e n  B i j  can be r e p r e s e n t e d  as  

B u ~ Bi ~ 6H. (25) 
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TABLE i. 
cosity with Experiment 

Comparison of Calculated Values of Effective Vis- 

Components of the solution and 
viscosity /L, (N-sec/m 2). 10 6 

Isopropyl alcohol (2590)--benzene 
(6O3) 

Ethyl alcohol ( 1180) - acetone 
(g46) 

Isopropyl alcohol (2020)- acetone 
(308) 

Cyclohexane (1260)--benzene 
(812) 

Bromoform (1890)-acetone (805) 

Pentacbioroethane (8730)-ethyl 
ether (228) 

[Bulk con- i Heat of so- 
centrafion I lution 6H, 
of second 
component  eal/mole 
r~ 

0,184 
0,357 
0,572 
0,783 
0,25 
0,50 
0,75 
0,18 
0,50 
0,70 
0,18 
0,47 
0,89 
0,20 
0,40 
0,60 
0,80 
0,27 
0,46 
0,72 

I 

130 
230 
310 
290 
170 
260 
200 
260 
407 
306 
240 
350 
160 

--220 
--330 
--300 
--200 
--560 
--714 
--430 

Discrepancy in % 
[(~exp - ~)"~exp i.1o0 

:interaction interaction 
disregarded taken into 

_ _  Laccount 

--14 --1,2 
--22 0,5 
3 0  I --1,9 
--26 0,6 
--17 ~ 2,7 
--24 3,2 
--19 3,5 
--24 4,0 
--43 --2,2 
--36 --0,3 
--20 0,1 
--25 9,0 
--9,2 3,5 
26,0 4,0 
20r --3,0 
21,0 --2,7 
13,0 k-2,3 
39,0 1,0 
40,0 --7,0 
28,0 2,0 

Taking Eqs. (24) and (25) into account, we write Eq. (23) as follows: 

~i = ~ exp ( ~  NfiH/RT), (26)  

where ~i' is the viscosity of the individual liquid in the solution. 

Thus, depending on the heat escape or absorption during the formation of the solution, 
an increase or decrease occurs in the viscosity of the initial components and, consequently, 
an increase or decrease in the viscosity of the solution. 

According to the scheme indicated we can calculate the effective viscosity of various 
binary systems with normal as well as associated components. The values of the quantities 
for the heat of the mixture are taken from [Ii]~ The comparison of the calculated values of 
the effective viscosity with the experimental data of [5] are presented in Fig. 2 and Table i. 

As we see, the suggested method allows us to calculate the viscosity of various binary 
liquid mixtures with sufficient accuracy. 

NOTATION 

x,y,z, coordinate axes; F, force; f, force per unit width; u(uo, uol, Uo2, ul), velocity; 
p, dynamic viscosity; K = H -:, fluidity; h, A, L, thickness, width, and length of liquid layer; 
s = AL, area of the liquid surface layer; R~, Rt, Re, viscous, thermal, and electrical re- 
sistances; %, thermal conductivity; a, electrical conductivity; c, parameter; m2, bulk con- 
centration of the second component; a, dispersion; b, mean arithmetic deviation; Ai, constant; 
Bi, Bij, Bi', energy of activation, mutual energy of activation, energy of activation of liq- 
uid i in solution; Ni, Nj, molal concentrations of components i and j; R, gas constant; T, 
absolute temperature; 6H, heat of solution. 
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EQUATION OF STATE OF A DENSE GAS IN A 

QUASICLASSICAL APPROXIMATION 

S. D. Gavrilov UDC 536.71 

We obtain an equation Of state for a dense monatomic gas involving the first 
quantum correction for thermodynamic functions. 

The equilibrium theory of a classical fluid that has been intensively developed in re- 
cent years enables us at present to quantitatively describe the thermodynamic properties of 
a liquid and a dense gas consisting of monatomic particles that interact additively [1-4]. 
Further progress in fluid theory is related to the consideration of quantum and nonadditive 
effects, and also to the nonspherical nature of complex molecules. 

The influence of small quantum effects on the thermodynamic properties of a fluid is 
studied in [5-8]. In [5-7] equations are used that require knowledge of the binary correla- 
tion function (or some integral of it) [6-7] of a classical system which is calculated by 
methods of molecular dynamics or the Monte Carlo method. The necessary calculations are car- 
ried out only for the Lennard-Jones potential (12-6) which does not adequately describe the 
intermolecular interaction and, in addition, does so only for low temperatures (referred to 
the characteristic energy of interaction), which conditions the application of these equa- 
tions only for neon and argon [5-7]. 

The equation obtained by perturbation theory [8] is also valid for high temperatures. It 
has little accuracy, however, which is possibly due to the unsuccessful choice of the inter- 
molecular potential. Another inadequacy in the equation obtained in [8] is the necessity of 
integrating a binary correlation function for the distribution of solid spheres that is given 
in table form for each temperature and density. Since we must solve an interpolation problem 
to obtain thermodynamic functions at a fixed pressure, this equation is practically inapplic- 
able for engine ring calculations. 

i. Presentation of the Quantum Correction for the 
Equation of State at High Temperature 

At temperatures for which we can disregard the nonadditive interactions (shown by the 
example of three-particle interactions) of the monatomic sphericosymmetric neutral particles 
[9, I0], the free energy of the system of N particles contained in volume V takes the follow- 
ing form with accuracy up to the first nonzero quantum correction [ii]: 

h ~ (pNA)~ V 
F = F 1 + ) g(R) V2U (R) R2dR : Fcl  + F u. ( l )  

24~mkT . 
0 

Here  g(R)  = exp [ - - u ( R ) / k T ] y ( R )  i s  t h e  r a d i a l  f u n c t i o n  o f  t h e  c l a s s i c a l  s y s t e m  o f  p a r t i c l e s  
that interact additively with the force--du(R)/dR. 
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